Probing as Quantifying the Inductive Bias of Pre-trained Representations

By Alexander Immer*, Lucas Torroba Hennigen*, Vincent Fortuin, Ryan Cotterell

Published in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022

Pre-trained contextual representations have led to dramatic performance improvements on a range of downstream tasks. This has motivated researchers to quantify and understand the linguistic information encoded in them. In general, this is done by probing, which consists of training a supervised model to predict a linguistic property from said representations. Unfortunately, this definition of probing has been subject to extensive criticism, and can lead to paradoxical or counter-intuitive results. In this work, we present a novel framework for probing where the goal is to evaluate the inductive bias of representations for a particular task, and provide a practical avenue to do this using Bayesian inference. We apply our framework to a series of token-, arc-, and sentence-level tasks. Our results suggest that our framework solves problems of previous approaches and that fastText can offer a better inductive bias than BERT in certain situations.

Paper Code